

SAF[™] PA12 technology Datasheet

SAF[™] PA12 is available for use with the H350, a material offering numerous benefits, most notably in delivering a high level of accuracy. Tight thermal control on the H350 leads to consistent parts and high nesting densities, and thus more parts per build. The following data highlight the capability of SAF[™] PA12.

Property	Mean	Unit	Standard*
Tensile Strength (XZ,YX)	47 (6817)	MPa (psi)	ASTM D638-14
Tensile Strength (ZX)	45 (6672))	MPa (psi)	ASTM D638-14
Elongation at Break (XZ,YX)	11	%	ASTM D638-14
Elongation at Break (ZX)	5	%	ASTM D638-14
0.2% Offset Yield Strength (XZ,YX)	33.5 (4859)	MPa (psi)	ASTM D638-14
0.2% Offset Yield Strength (ZX)	32.2 (4670)	MPa (psi)	ASTM D638-14
Tensile Modulus (XZ,YX)	1750 (254)	MPa (ksi)	ASTM D638-14
Tensile Modulus (ZX)	1700 (247)	MPa (ksi)	ASTM D638-14
Flexural Strength (XZ,YX)	40 (5801)	MPa (psi)	ASTM D790-17
Flexural Strength (ZX)	41 (5946)	MPa (psi)	ASTM D790-17
Flexural Modulus (XZ,YX)	900 (131)	MPa (ksi)	ASTM D790-17
Flexural Modulus (ZX)	925 (134)	MPa (ksi)	ASTM D790-17
Notched Impact Strength (XZ,YX)	4.17 (1.98)	kJ/m2 (Ft.lbf/in²)	ASTM D256-10
Notched Impact Strength (ZX)	3.36 (1.60)	kJ/m2 (Ft.lbf/in²)	ASTM D256-10

*testing based on stated ASTM standards with the following exceptions: tests performed at ambient laboratory conditions (approximately 21 °C and ambient humidity). Samples not conditioned as per stated methods prior to testing.

General	Mean	Unit	Standard
Part Specific Gravity	0.98		ASTM D792-13
Virgin Particle Size D50	56 (2.2)	µm (thou)	
Virgin Powder Melting Point	185 (365)	°C (°F)	

Thermal	Mean	Unit	Standard
Heat Deflection Temperature (0.45MPa/65psi)	173 (343)	°C (°F)	ASTM D648
Heat Deflection Temperature (1.82MPa/264psi)	77 (171)	°C (°F)	ASTM D648
Coefficient of Thermal Expansion	160 (0.089)	µm/°C.m (thou/in.°F)	ASTM E831
Specific Heat Capacity (20°C/68°F)	1.69 (0.4)	J/g.°C (BTU/lb.°F)	ASTM E1952
Thermal Conductivity (23°C/73°F)	0.192 (1.34)	W/m K (BTU (th) inch/hr.ft.°F)	ASTM E1952
Electrical	Mean	Unit	Standard
Surface resistivity	5.53 x10 ¹³	Ohm	ASTM D257
Volume resistivity	4.19 x10 ¹⁴	Ohm-cm	ASTM D257
Bio compatibility	Result	Unit	Standard
Determination of Sensitization - human cell line activation test (h-Clat)	Non-Sensitizer	N/A	OECD 442E 2018-06
Determination of Skin Irritation	Non-irritant	N/A	ISO 10993-10 2014-10 / OECD 439 2015-07
Determination of Cytotoxicity	Material shows no cytotoxic effect	N/A	DIN EN ISO 10993-5, 2009, Annex D
Flammability	Mean	Unit	Standard
UL94 HB	Pass	Not Applicable	UL94 (April 2022)

Testing Varying Temperatures

The following results give an indication of the tensile properties of the material across a range of temperatures. Tensile testing was conducted between -50°C (-58°F) and 140°C (284°F) with all coupons and testing in accordance with ASTM D638-22. Coupons were manufactured in both XZ and ZX directions with 5 coupons per direction. The results are presented as a percentage of room temperature properties.

XZ

When testing samples at high temperatures, ductility is significantly increased. This can lead to samples stretching beyond the capability of the test equipment rather than having a definitive failure point. With no failure point, the elongation at break and ultimate strength of the sample cannot be accurately measured. Values affected by this are highlighted in **blue**. Where necessary, these values are excluded from the plots below to keep the scales legible.

Material	Direction	Tei	mp	Ultimate	Elongation	Tensile	Yield
		(F)	(C)	Tensile Strength	at Break	Modulus	Strength
High Yield PA12	XZ	-58	-50	154%	58%	130%	208%
		-4	-20	130%	73%	122%	175%
		32	0	113%	98%	120%	150%
		113	45	74%	249%	50%	70%
		158	70	61%	320%	35%	59%
		212	100	48%	396%	27%	46%
		284	140	37%	1373%	16%	31%

ZX

Material	Direction	Temp		Ultimate	Elongation	Tensile	Yield
		(F)	(C)	Tensile Strength	at Break	Modulus	Strength
High Yield PA12	ZX	-58	-50	131%	64%	131% ¹	NA ¹
		-4	-20	119%	85%	127%	171%
		32	0	112%	128% ²	126%	154%
		113	45	75%	320%	56%	76%
		158	70	59%	368%	37%	62%
		212	100	48%	600%	25%	51%
		284	140	35%	2384%	18%	35%

¹ Samples underwent brittle fracture with no yield or plastic deformation. No yield strength could be determined. Tensile modulus may also be inaccurate as a result. ² Elongation at break is expected to improve as temperature increases. Temperature testing was conducted with fewer test coupons than the room temperature. Smaller sample sizes are more likely to yield extreme results which may not conform to the expected trend.

Disclaimer:

¹ Customer acknowledges the contents of this document and that Stratasys parts, materials, and supplier are subject to its standard terms and conditions, available on http://www.stratasys.com/legal/terms-and-conditions-of-sale, which are incorporated herein by reference.

² The specifications and/or information on which this document is based are subject to change without notice.

³ The information presented are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. End-use material performance can be impacted (+/-) by, but not limited to, part design, end-use conditions, test conditions, etc. Actual values will vary with build conditions. Tested parts were built on the Stratasys H350 3D printer. Product specifications are subject to change without notice. The performance characteristics and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. Stratasys makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement.

Stratasys Headquarters

7665 Commerce Way, Eden Prairie, MN 55344 +1 800 801 6491 (US Toll Free) +1 952 937-3000 (Intl) +1 952 937-0070 (Fax)

stratasys.com

ISO 9001:2015 Certified

1 Holtzman St., Science Park, PO Box 2496 Rehovot 76124, Israel +972 74 745 4000 +972 74 745 5000 (Fax)

© 2023 Stratasys. All rights reserved. Stratasys, the Stratasys Signet logo, Stratasys Direct Manufacturing, H350, H Series, SAF, Selective Absorption Fusion, Big Wave and HAF are trademarks or registered trademarks of Stratasys Inc. and/or its affiliates. The H350 printer is subject to a license from Loughborough University Enterprises Limited and Evonik IP GmbH under the following and/or related patents and patent applications and their family members: EP2739457, EP3539752, EP1648686, EP 1740367, EP1737646, EP1459871. Further details including live and in-force status of family members may be found at <u>https://worldwide.espacenet.com/patent/search/family</u>. All other trademarks are the property of their respective owners, and Stratasys assumes no responsibility with regard to the selection, performance, or use of these non Stratasys products. Product specifications subject to change without notice. MDS_SAF_PA12_0523a

